Abstract

ARGOS is the Ground Layer Adaptive Optics system of the Large Binocular Telescope, it uses three Laser Guide Stars at 12 km altitude, generated by Rayleigh backscattered light of pulsed Nd:YAG lasers at 532nm. The wavefront distortion in the Ground Layer is measured by three Shack-Hartmann WFS, sampling with 15&times;15 subaperture the three LGS arranged on a single CCD with 8&times;8<i>px</i> per square subaperture. The SLOpe Detection And Ranging (SLODAR) is a method used to measure the turbulence profiles. Cross correlation of wavefronts gradient from multiple stars is used to estimate the relative strengths of turbulent layers at different altitudes. In the ARGOS case the LGS are arranged on a triangle inscribed in a 2 arcmin radius circle, so we expect an effective slopes correlation up to 5km altitude. We present here the results of a study aimed to implement the SLODAR method on ARGOS performed with the idl-based simulation code used to characterize the ARGOS performance. Simulation implements the atmospheric turbulence on different layers with variable strength, altitude and wind speed. The algorithm performance are evaluated comparing the input turbulence with the cross-correlation of the SH slopes acquired in open loop.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.