Abstract

The implementation of machine learning concepts using optoelectronic and photonic components is rapidly advancing. Here, we use the recently introduced notion of optical dendritic structures, which aspires to transfer neurobiological principles to photonics computation. In real neurons, plasticity—the modification of the connectivity between neurons due to their activity—plays a fundamental role in learning. In the current work, we investigate theoretically and experimentally an artificial dendritic structure that implements a modified Hebbian learning model, called input correlation (ICO) learning. The presented optical fiber-based dendritic structure employs the summation of the different optical intensities propagating along the optical dendritic branches and uses Gigahertz-bandwidth modulation via semiconductor optical amplifiers to apply the necessary plasticity rules. In its full deployment, this optoelectronic ICO learning analog can be an efficient hardware platform for ultra-fast control.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.