Abstract

Implant removal is unnecessary for biodegradable magnesium (Mg)-based implants and, therefore, the related risk for implant-induced fractures is limited. Aging, on the other hand, is associated with low bone-turnover and decreased bone mass and density, and thus increased fracture risk. Osteoporosis is accompanied by Mg deficiency, therefore, we hypothesized that Mg-based implants may support bone formation by Mg2+ ion release in an ovariectomy-induced osteoporotic rat model. Hence, we investigated osseointegration and implant degradation of a low-alloyed, degrading Mg–Zn–Ca implant (ZX00) in ovariectomy-induced osteoporotic (Osteo), old healthy (OH), and juvenile healthy (JH) groups of female Sprague Dawley rats via in vivo micro-computed tomography (µCT). For the Osteo rats, we demonstrate diminished trabecular bone already after 8 weeks upon ovariectomy and significantly enhanced implant volume loss, with correspondingly pronounced gas formation, compared to the OH and JH groups. Sclerotic rim development was observed in about half of the osteoporotic rats, suggesting a prevention from foreign-body and osteonecrosis development. Synchrotron radiation-based µCT confirmed lower bone volume fractions in the Osteo group compared to the OH and JH groups. Qualitative histological analysis additionally visualized the enhanced implant degradation in the Osteo group. To date, ZX00 provides an interesting implant material for young and older healthy patients, but it may not be of advantage in pharmacologically untreated osteoporotic conditions. Statement of significanceMagnesium-based implants are promising candidates for treatment of osteoporotic fractures because of their biodegradable, biomechanical, anti-bacterial and bone regenerative properties. Here we investigate magnesium‒zinc‒calcium implant materials in a rat model with ovariectomy-induced osteoporosis (Osteo group) and compare the related osseointegration and implant degradation with the results obtained for old healthy (OH) and juvenile healthy (JH) rats. The work applied an appropriate disease model for osteoporosis and focused in particular on long-term implant degradation for different bone conditions. Enhanced implant degradation and sclerotic rim formation was observed in osteoporotic rats, which illustrates that the setting of different bone models generates significantly modified clinical outcome. It further illustrated that these differences must be taken into account in future biodegradable implant development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.