Abstract

The present paper applies Sobol's variance-based global sensitivity analysis (SSA) to quantify the contribution of input imperfections to the load-carrying capacity (LCC) of an IPN 200 steel compressed member. LCC is evaluated using the geometrically and materially non-linear finite element solution with regard to the effects of initial random imperfections including residual stresses. Comparison of results of SSA for (i) buckling about the minor principal axis, (ii) buckling about the major principal axis and (iii) lateral–torsional buckling due to bending moment is performed on the non-dimensional slenderness interval of 0–2. SSA for (i) and (ii) is performed for steel grade (a) S235 and (b) S355, SSA for (iii) is performed only for steel grade S235. SSA found similarities in results (ia) and (ib), (iia) and (iib) and identified significant differences between results (ia) and (iiia), (iia) and (iiia), where sensitivity to the initial axial curvature is more than two times higher in (ia) than in (iiia). The relationships between the effects of initial imperfections on LCC and the design criteria of reliability of Eurocode 3 are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.