Abstract

The a.c. complex impedance spectroscopy technique was used to obtain the electrical parameters of (Na0.5Bi0.5)0.94Ba0.06TiO3 +0.3 wt% Sm2O3 +0.25 wt% LiF lead-free ceramics in a wide frequency range at different temperatures. These samples were prepared by a high-temperature solid-state reaction technique and their single phase formation was confirmed by the X-ray diffraction technique. Dielectric studies exhibit a diffuse phase transition characterized by a temperature and frequency dispersion of permittivity, and this relaxation has been modelled using the modified Curie–Weiss law. The variation of imaginary part (Z′′) of impedance with frequency at various temperatures shows that the Z′′ values reach a maxima peak (Z $^{\boldsymbol {\prime \prime }}_{\boldsymbol {\max }}$ ) above 400 ∘ C. The appearance of single semicircle in the Nyquist plots (Z′′ vs. Z′) pattern at high temperatures suggests that the electrical process occurring in the material has a relaxation process possibly due to the contribution for bulk material only. The bulk resistance of the material decreases with rise in temperatures similar to that of a semiconductor, and the Nyquist plot showed the negative temperature coefficient of resistance (NTCR) character of these materials. The frequencies, thermal effect on a.c. conductivity and activation energy have been assessed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.