Abstract

The polycrystalline Bi1−x Gd x FeO3 (BGFO) (x=0.0, 0.05, 0.10, 0.15, 0.20) materials were synthesized by a solid-state reaction (mixed oxide) technique. Preliminary X-ray structural analysis of the compounds confirmed the formation of single-phase polycrystalline samples. Room temperature scanning electron micrographs of the materials revealed the size, type and distribution of grains on the surface of samples. Studies of impedance, electrical modulus and electric conductivity of the materials in a wide frequency (10–1000 kHz) and temperature (30–500 ∘C) range using a complex impedance spectroscopy technique have provided considerable vital information on contribution of grains, grain boundary and interface in these parameters. A strong correlation between these electrical parameters and microstructures (bulk, grain boundary, nature of charge carrier, etc.) of the materials was established. The frequency dependence of electric modulus and impedance of the material shows the presence of non-Debye type of relaxation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.