Abstract

Hyperglycemia is a hallmark of diabetes that is associated with diabetic complications and a reduction of lifespan. Using the mev-1 mutant of the nematode Caenorhabditis elegans we here tried to identify molecular mechanisms underlying the lifespan reducing effects of glucose. The lowest glucose concentration tested (10mM) caused a significant lifespan reduction at 37°C and was used to assess effects on mitochondrial efficiency, formation of protein carbonyls and levels of methylglyoxal, a precursor of advanced glycation end products (AGEs). RNA-interference (RNAi) served the identification of targets for glucose-induced damage. Levels of protein carbonyls and AGEs remained unaffected by 10mM glucose. Levels of reactive oxygen species inside mitochondria were increased but their scavenging by ascorbic acid did not influence lifespan reduction by glucose. Mitochondrial efficiency was reduced by glucose as concluded from a lowered P/O-ratio. A reduced lifespan of mev-1 that was unaffected by the addition of glucose resulted from RNAi of key players of mitochondrial unfolded protein response. Besides increased accumulation of misfolded proteins, reduced proteasomal degradation caused the same phenotype as was evidenced by RNAi for UBQ-1 or UBA-1. Accumulation of functionally impaired proteins, e.g. in mitochondria, underlies the lifespan reducing effects of glucose. Our study provides evidence for a crucial importance of the proteostasis network for lifespan regulation which is impaired by glucose.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.