Abstract

A decrease in the lineage commitment of multipotent Mesenchymal stem cells (MSC) to the bone forming osteoblast lineage and an increase in the commitment to the fat forming adipocyte lineage is more common in bone marrow of elderly persons. A link between methylation status and MSC differentiation remains unclear. Therefore, we hypothesize that hypomethylation may decide the fate decisions of MSC. In the current study, murine bone marrow derived-C3H10T1/2 stem cell was used to examine the role of methylation mechanism on the differentiation potential of stem cells into osteoblasts or adipocytes. C3H10T1/2 cells were treated with Periodate oxidized adenosine (Adox), an inhibitor of S-adenosylhomocysteine-dependent hydrolase (SAHH), which in turn block the non-DNA methylation pathway. The effect of hypomethylation on C3H10T1/2 stem cell differentiation was determined by measuring the alkaline phosphates activity and the degree of mineralization as well as Oil-red O staining and lipid content. The ratio of S-adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH) was determined as a metabolic indicator of cellular methylation potential. It was clearly observed that hypomethylation significantly (P < 0.05) reduces SAM: SAH ratio, alkaline phosphates activity, calcification and thereby, osteoblast differentiation. Conversely, adipocyte differentiation was stimulated by hypomethylation. Altogether, our data suggest that non-DNA hypomethylation changes the differentiation potential of C3H10T1/2 stem cells for less osteogenic and more adipogenic.

Highlights

  • Mesenchymal stem cell (MSC) are multipotent adult stem cells of mesodermal origin with the capacity to differentiate into cells of various multiple tissues, e.g., muscle, bone, cartilage, fat, and marrow stroma (Otto and Rao 2004)

  • C3H101/2 stem cells are functionally similar to MSCs and have the potential to differentiate into multiple cell types, for example, osteoblasts, adipocytes or chondrocytes dependent on the stimulation agents that have been used

  • Alkaline phosphatase activity To quantify the result of osteoblast differentiation in cells, Alkaline Phosphatase (ALP) assay was done

Read more

Summary

Introduction

MSC are multipotent adult stem cells of mesodermal origin with the capacity to differentiate into cells of various multiple tissues, e.g., muscle, bone, cartilage, fat, and marrow stroma (Otto and Rao 2004). Previous studies as demonstrated in vitro and in vivo have provided evidence that chronic elevation in plasma Hcy associated with vitamins deficiencies have an indirect and negative effect on cellular SAH levels, which should result in feedback inhibition of SAM-dependent methyltransferase reactions and reduced methylation capacity. This has to lead to the following hypothesis that homocysteine is a metabolic marker for a reduced methylation activity (Afman et al, 2005; Chen et al, 2001; Ping et al 2000). MSC and primary cultures need to be isolated freshly, thereby introducing possible variations between experiments as a result of cell isolations from different donors (Dani et al, 1997; Kawaguchi et al 2005)

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.