Abstract

The pathogenesis of Parkinson's disease is not fully understood, but there is evidence that excitotoxic mechanisms contribute to the pathology. However, data supporting a role for excitotoxicity in the pathophysiology of the disease are controversial and sparse. The goal of this study was to determine whether changes in glutamate signaling and uptake contribute to the demise of dopaminergic neurons in the substantia nigra. Mice were treated chronically with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and probenecid or vehicle (probenecid or saline alone). Extracellular levels of glutamate in the substantia nigra were substantially increased, and there was an increase in the affinity, but no change in the velocity, of glutamate transport after MPTP/probenecid treatment compared to vehicle controls. In addition, the substantia nigra showed two types of programmed death, apoptosis (type I) and autophagic (type II) cell death. These data suggest that increased glutamate signaling could be an important mechanism for the death of dopaminergic neurons and trigger the induction of programmed cell death in the chronic MPTP/probenecid model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.