Abstract

Acute cholecystitis develops in gallbladders (GB) with excessive bile cholesterol (Ch). Increased membrane Ch content affects membrane function and may affect PGE(2) receptors involved in the cytoprotection against acute inflammation. This study was aimed at determining whether the cytoprotective response to PGE(2) is affected by lithogenic bile with Ch. Muscle cells from human GB with cholesterol stones (ChS) or pigment stones (PS) were obtained by enzymatic digestion. PGE(2) levels were measured by radioimmunoassay, and activities of superoxide dismutase (SOD) and catalase were assayed by spectrophotometry. The contraction in response to H(2)O(2) in muscle cells from PS was 14 +/- 0.3%, not different from normal controls, and decreased after the cells were incubated with Ch-rich liposomes (P < 0.05), which increase the Ch content in the plasma membranes. In muscle cells from GB with ChS, H(2)O(2)-induced contraction was only 9.2 +/- 1.3% and increased to 14 +/- 0.2% after Ch-free liposome treatment to remove Ch from the plasma membranes (P < 0.01). H(2)O(2) caused a similar increase in the levels of lipid peroxidation and PGE(2) content in muscle cells from GBs with ChS and PS. However, the activities of SOD and catalase were significantly lower in muscle cells from GBs with ChS compared with those with PS. The binding capacity of PGE(2) receptors was also significantly lower in muscle cells from GBs with ChS compared with those with PS. In conclusion, the cytoprotective response to reactive oxygen species is reduced in muscle cells from GBs with ChS despite a normal increase in the cellular levels of PGE(2). This impaired cytoprotective response may be due to a dysfunction of PGE(2) receptors with decreased binding capacity resulting from excessive Ch levels in the plasma membrane.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.