Impacts of typhoon megi (2010) on the South China Sea
Abstract In October 2010, typhoon Megi induced a profound cold wake of size 800 km by 500 km with sea surface temperature cooling of 8°C in the South China Sea (SCS). More interestingly, the cold wake shifted from the often rightward bias to both sides of the typhoon track and moved to left in a few days. Using satellite data, in situ measurements and numerical modeling based on the East Asian Seas Nowcast/Forecast System (EASNFS), we performed detailed investigations. To obtain realistic typhoon‐strength atmospheric forcing, the EASNFS applied typhoon‐resolving Weather Research and Forecasting (WRF) model wind field blended with global weather forecast winds from the U.S. Navy Operational Global Atmospheric Prediction System (NOGAPS). In addition to the already known impacts from the slow typhoon translation speed and shallow pre‐exiting ocean thermocline, we found the importance of the unique geographical setting of the SCS and the NE monsoon. As the event happened in late October, NE monsoon already started and contributed to the southwestward ambient surface current. Together with the topographicβ effect, the cold wake shifted westward to the left of Megi's track. It was also found that Megi expelled waters away from the SCS and manifested as a gush of internal Kelvin wave exporting waters through the Luzon Strait. The consequential sea level depression lasted and presented a favorable condition for cold dome development. Fission of the north‐south elongated cold dome resulted afterward and produced two cold eddies that dissipated slowly thereafter.
18
- 10.3319/tao.2008.11.25.01(oc)
- Jan 1, 2009
- Terrestrial, Atmospheric and Oceanic Sciences
113
- 10.1175/bams-86-6-787
- Jun 1, 2005
- Bulletin of the American Meteorological Society
13
- 10.1023/a:1007861122826
- Jan 1, 1999
- Journal of Oceanography
301
- 10.1175/2008mwr2277.1
- Sep 1, 2008
- Monthly Weather Review
431
- 10.1029/2003gl017141
- Jul 1, 2003
- Geophysical Research Letters
773
- 10.1029/2004gl019460
- Sep 1, 2004
- Geophysical Research Letters
57
- 10.1017/s0022112086001246
- Dec 1, 1986
- Journal of Fluid Mechanics
49
- 10.3319/tao.2009.06.08.02(iwnop)
- Jan 1, 2010
- Terrestrial, Atmospheric and Oceanic Sciences
83
- 10.5670/oceanog.2011.91
- Dec 1, 2011
- Oceanography
39
- 10.1175/2009jpo4062.1
- Oct 1, 2009
- Journal of Physical Oceanography
- Book Chapter
5
- 10.5772/64009
- Nov 2, 2016
The Western North Pacific (WNP) is the most favorable area in the world for the generation of tropical cyclones (TCs). As the most intense weather system, TCs play an important role in the change of ocean environment in the WNP. Based on many investigations published in the literature, we obtained a collective and systematic understanding of the influence of TCs on ocean components in the WNP, including sea temperature, ocean currents, mesoscale eddies, storm surges, phytoplankton (indicated by chlorophyll a). Some ocean responses to TCs are unique in the WNP because of the existence of the Kuroshio and special geographical configurations such as the South China Sea.
- Research Article
5
- 10.3389/fmars.2023.1105687
- Feb 28, 2023
- Frontiers in Marine Science
Responses of the South China Sea (SCS) to a typhoon are complex due to the susceptible upper layer and active multiscale motions and thus need to be urgently resolved and validated in numerical simulations. A coupled atmosphere–ocean–wave model and various in-situ observations were applied to understand the strong interactions between Super Typhoon Megi (2010) and the SCS, especially the wave effects on typhoon simulation. Five sensitive experiments using different combinations of models were firstly conducted and compared to validate the effectiveness of the ocean coupling. Compared with WRF-only and ROMS-only outputs, the coupled experiments evidently improved the accuracy of typhoon intensity, the typhoon-induced cold wake, and significant wave height, along with the thermodynamical responses in the upper 400 m layer, including the near-inertial currents, the variation in ocean heat content, and mixed layer depth. However, the differences between WRF-ROMS and COAWST were slight, though the significant wave height was more than 9 m high in COAWST. Further analysis showed that the modification of heat flux, which could cancel out the effect due to the wave-induced surface roughness, is consistent with that of momentum flux in the wave-coupled experiment. This resulted in similar overall results. To further figure out the wave effects on typhoon and eliminate the contingency brought by the surface physical parameterization scheme, six experiments using three surface physical parameterization schemes were designed with and without wave coupling, separately. The sensible heat flux showed significant differences between three schemes, followed by the latent heat flux and the correspondingly changing momentum loss. Results support the above-mentioned conclusion that the typhoon intensity was determined by the net surface flux. Our findings highlight the necessity in using a high-resolution coupled atmosphere–ocean–wave model and proper surface physical parameterization, especially when coupling waves to make accurate regional numerical environment predictions.
- Research Article
2
- 10.1016/j.ocemod.2023.102243
- Jul 27, 2023
- Ocean Modelling
Energetics of the M[formula omitted] internal tides modulated by typhoons at the Luzon Strait
- Research Article
- 10.1007/s13131-021-1870-7
- Nov 1, 2021
- Acta Oceanologica Sinica
Interannual variability in the sea surface cooling induced by tropical cyclones in the South China Sea
- Research Article
- 10.3390/rs17193388
- Oct 9, 2025
- Remote Sensing
Chlorophyll-a is a key indicator characterizing the health of marine ecosystems. This study aimed to assess eutrophication risk by investigating the spatio-temporal evolution of chlorophyll-a in the South China Sea (SCS). Based on MODIS-Aqua remote sensing data from 2003 to 2024, five spatial interpolation methods were compared, and Ordinary Kriging was selected as the optimal method (r = 0.96) for reconstructing the chlorophyll-a distribution. The findings indicate that chlorophyll-a is higher in winter and autumn than in summer and spring, with significant enrichment observed near coastal areas. Concentrations decrease with increasing distance from the shore. The Mekong River estuary consistently exhibits high values, while the concentration in the SCS Basin remains persistently low. Furthermore, the spatial extent where chlorophyll concentrations exceed the bloom threshold was evaluated to highlight potential eutrophication risk. These results provide a scientific basis for understanding the response mechanism of the SCS ecosystem to climate change and have important implications for regional marine environmental management and ecological conservation.
- Research Article
17
- 10.3390/rs11202431
- Oct 19, 2019
- Remote Sensing
The upper ocean thermodynamic and biological responses to two sequential tropical cyclones (TCs) over the Northwestern Pacific Ocean were investigated using multi-satellite datasets, in situ observations and numerical model outputs. During Kalmaegi and Fung-Wong, three distinct cold patches were observed at sea surface. The locations of these cold patches are highly correlated with relatively shallower depth of the 26 °C isotherm and mixed layer depth (MLD) and lower upper ocean heat content. The enhancement of surface chlorophyll a (chl-a) concentration was detected in these three regions as well, mainly due to the TC-induced mixing and upwelling as well as the terrestrial runoff. Moreover, the pre-existing ocean cyclonic eddy (CE) has been found to significantly modulate the magnitude of surface cooling and chl-a increase. With the deepening of the MLD on the right side of TCs, the temperature of the mixed layer decreased and the salinity increased. The sequential TCs had superimposed effects on the upper ocean response. The possible causes of sudden track change in sequential TCs scenario were also explored. Both atmospheric and oceanic conditions play noticeable roles in abrupt northward turning of the subsequent TC Fung-Wong.
- Research Article
17
- 10.1029/2021jd034857
- Jul 19, 2021
- Journal of Geophysical Research: Atmospheres
Abstract The sea surface temperature (SST) beneath a tropical cyclone (TC) is of great importance to its dynamics; therefore, understanding and accurately estimating the magnitude of SST cooling is of vital importance. Existing studies have explored important influences on SST of TC translation speed, maximum surface winds, ocean thermal condition, and ocean stratification. But the influence of the TC wind radii (or collectively called the TC size) on SST has been largely overlooked. In this study, we assess the influence of wind radii uncertainty on SST cooling by a total of 15,983 numerical simulations for the western North Pacific during the 2014–2018 seasons. Results show a 6%–20% SST cooling error induced using wind radii from the Joint Typhoon Warning Center official forecast and a 35%–40% SST cooling error using wind radii from the operational runs of the Hurricane Weather Research and Forecasting (HWRF) model. Our results indicate that SST cooling is most sensitive to the radius of 64 kt winds (R64) due to its effects on the integrated kinetic energy of the TC and subsequent mixing of the ocean surface layer. It is also found that the correlation between SST cooling induced by the TC and its size is 0.49, which is the highest among all the parameters tested. This suggests that it is extremely important to get TC size correct in order to predict the SST cooling response, which then impacts TC evolution in numerical weather prediction models.
- Research Article
- 10.1038/s41598-025-09246-x
- Oct 2, 2025
- Scientific Reports
This study examines the biophysical response of the central South China Sea to autumn typhoons using multi-satellite observations and reanalysis. These typhoons frequently interact with cyclonic eddies (CE), as exemplified by Tropical Storm (TS) Nakri in November 2019, which traversed a CE twice in a ‘Looped’ path, intensifying it. Nakri induced significant sea surface cooling (maximum of 6.52°C) and a phytoplankton bloom (maximum of 5.61 mg/m3) lasting three weeks. The hybrid coordinate ocean model effectively simulated the upper ocean response, revealing near-inertial oscillations in vertical temperature variation. Slow-moving Nakri, combined with CE intensification, drove strong upwelling, uplifting the 24 ℃ isoline to the surface. The prolonged forcing (60 hours) enhanced vertical mixing and energy input. The most pronounced bloom occurred in the northeastern ‘Looped’ region, likely due to strong northward geostrophic transport and subsurface nutrient supply. Temperature diagnostics indicate that mixed-layer entrainment and vertical advection primarily drive upper-ocean cooling, outweighing horizontal advection, especially during TS intensification. Biogeochemical model analysis supports these findings, highlighting TS-induced mixing as a key driver of nutrient transport into the euphotic zone, sustaining phytoplankton growth.Supplementary InformationThe online version contains supplementary material available at 10.1038/s41598-025-09246-x.
- Research Article
3
- 10.1007/s13131-020-1573-5
- Jul 1, 2020
- Acta Oceanologica Sinica
Many typhoons pass through the East China Sea (ECS) and the oceanic responses to typhoons on the ECS shelf are very energetic. However, these responses are not well studied because of the complicated background oceanic environment. The sea surface temperature (SST) response to a severe Typhoon Rananim in August 2004 on the ECS shelf was observed by the merged cloud-penetrating microwave and infrared SST data. The observed SST response shows an extensive SST cooling with a maximum cooling of 3°C on the ECS shelf and the SST cooling lags the typhoon by about one day. A numerical model is designed to simulate the oceanic responses to Rananim. The numerical model reasonably simulates the observed SST response and thereby provides a more comprehensive investigation on the oceanic temperature and current responses. The simulation shows that Rananim deepens the ocean mix layer by more than 10 m on the ECS shelf and causes a cooling in the whole mixed layer. Both upwelling and entrainment are responsible for the cooling. Rananim significantly deforms the background Taiwan Warm Current on the ECS shelf and generates strong Ekman current at the surface. After the typhoon disappears, the surface current rotates clockwise and vertically, the current is featured by near inertial oscillation with upward propagating phase.
- Research Article
35
- 10.1029/2019jd031377
- Dec 21, 2019
- Journal of Geophysical Research: Atmospheres
Abstract The coastal ocean response and feedback to Typhoon Hato (2017) were studied based on high‐resolution numerical simulations using both a coupled and an uncoupled cloud‐resolving model. As a category 3 landfalling typhoon that moved west‐northwestward across the northern South China Sea, Hato (2017) rapidly intensified prior to its landfall and induced significant impacts on the coastal water column, causing warm and cold patches in sea surface temperature (SST) over the continental shelf to the right of the track. This feature was well captured in an air‐sea coupled model experiment. The coastal SST warming was found to be related to a two‐layer oceanic circulation across the continental shelf forced by the onshore surface wind stress to the right of the storm track. The associated onshore surface currents imposed a warm temperature advection and downwelling, leading to the SST warming in the inner sea shelf, as diagnosed from an ocean temperature budget analysis. A sensitivity experiment, in which the typhoon vortex was removed from the initial conditions, further confirmed that it was the strong onshore wind stress to the right of the storm track that forced the onshore surface currents and the SST warming in the inner sea shelf. Results from an atmosphere‐only model experiment with the typhoon‐forced coastal warm SST anomalies removed demonstrate that the typhoon‐induced coastal warm SST anomalies contributed partly to the rapid intensification of Typhoon Hato prior to its landfall over South China and also slowed down the weakening of Hato at and shortly after its landfall.
- Research Article
68
- 10.3390/rs70100467
- Jan 6, 2015
- Remote Sensing
Using accurate inputs of wind speed is crucial in wind resource assessment, as predicted power is proportional to the wind speed cubed. This study outlines a methodology for combining multiple ocean satellite winds and winds from WRF simulations in order to acquire the accurate reconstructed offshore winds which can be used for offshore wind resource assessment. First, wind speeds retrieved from Synthetic Aperture Radar (SAR) and Scatterometer ASCAT images were validated against in situ measurements from seven coastal meteorological stations in South China Sea (SCS). The wind roses from the Navy Operational Global Atmospheric Prediction System (NOGAPS) and ASCAT agree well with these observations from the corresponding in situ measurements. The statistical results comparing in situ wind speed and SAR-based (ASCAT-based) wind speed for the whole co-located samples show a standard deviation (SD) of 2.09 m/s (1.83 m/s) and correlation coefficient of R 0.75 (0.80). When the offshore winds (i.e., winds directed from land to sea) are excluded, the comparison results for wind speeds show an improvement of SD and R, indicating that the satellite data are more credible over the open ocean. Meanwhile, the validation of satellite winds against the same co-located mast observations shows a satisfactory level of accuracy which was similar for SAR and ASCAT winds. These satellite winds are then assimilated into the Weather Research and Forecasting (WRF) Model by WRF Data Assimilation (WRFDA) system. Finally, the wind resource statistics at 100 m height based on the reconstructed winds have been achieved over the study area, which fully combines the offshore wind information from multiple satellite data and numerical model. The findings presented here may be useful in future wind resource assessment based on satellite data.
- Research Article
39
- 10.1175/1520-0434(2002)017<0800:tcfotw>2.0.co;2
- Aug 1, 2002
- Weather and Forecasting
A set of criteria is developed to identify tropical cyclone (TC) formations in the Navy Operational Global Atmospheric Prediction System (NOGAPS) analyses and forecast fields. Then the NOGAPS forecasts of TC formations from 1997 to 1999 are verified relative to a formation time defined to be the first warning issued by the Joint Typhoon Warning Center. During these three years, the spatial distributions of TC formations were strongly affected by an El Nino–Southern Oscillation event. The successful NOGAPS predictions of formation within a maximum separation threshold of 4° latitude are about 70%–80% for 24-h forecasts, and drop to about 20%–30% for 120-h forecasts. The success rate is higher for formations in the South China Sea and between 160°E and 180° but is generally lower between 120° and 160°E. The composite 850-hPa large-scale flow for the formations between 120° and 160°E is similar to a monsoon confluence region with marked cross-equatorial flow. Therefore, it is concluded that the skil...
- Research Article
87
- 10.1175/1520-0434(1994)009<0557:aostco>2.0.co;2
- Dec 1, 1994
- Weather and Forecasting
In June 1990, the assimilation of synthetic tropical cyclone observations into the Navy Operational Global Atmospheric Prediction System (NOGAPS) was initiated at Fleet Numerical Oceanography Center (FNOC). These observations are derived directly from the information contained in the tropical cyclone warnings issued by the Joint Typhoon Warning Center (JTWC) and the National Hurricane Center. This paper describes these synthetic observations, the evolution of their use at FNOC, and the details of their assimilation into NOGAPS. The results of a comprehensive evaluation of the 1991 NOGAPS tropical cyclone forecast performance in the western North Pacific are presented. NOGAPS analysis and forecast position errors were determined for all tropical circulations of tropical storm strength or greater. It was found that, after the assimilation of synthetic observations, the NOGAPS spectral forecast model consistently maintained the tropical circulations as evidenced by detection percentages of 96%, 90% ...
- Research Article
32
- 10.1175/1520-0434(1993)008<0003:aeotrt>2.0.co;2
- Mar 1, 1993
- Weather and Forecasting
The paper evaluates the meteorological quality and operational utility of the Navy Operational Global Atmospheric Prediction System (NOGAPS) in forecasting tropical cyclones. It is shown that the model can provide useful predictions of motion and formation on a real-time basis in the western North Pacific. The meterological characteristics of the NOGAPS tropical cyclone predictions are evaluated by examining the formation of low-level cyclone systems in the tropics and vortex structure in the NOGAPS analysis and verifying 72-h forecasts. The adjusted NOGAPS track forecasts showed equitable skill to the baseline aid and the dynamical model. NOGAPS successfully predicted unusual equatorward turns for several straight-running cyclones.
- Research Article
78
- 10.1175/1520-0493(2004)132<1254:rmotec>2.0.co;2
- May 1, 2004
- Monthly Weather Review
The convective parameterization of Emanuel has been employed in the forecast model of the Navy Operational Global Atmospheric Prediction System (NOGAPS) since 2000, when it replaced a version of the relaxed Arakawa–Schubert scheme. Although in long-period data assimilation forecast tests the Emanuel scheme has been found to perform quite well in NOGAPS, particularly for tropical cyclones, some weaknesses have also become apparent. These weaknesses include underprediction of heavy-precipitation events, too much light precipitation, and unrealistic heating at upper levels. Recent research efforts have resulted in modifications of the scheme that are designed to reduce such problems. One change described here involves the partitioning of the cloud-base mass flux into mixing cloud mass flux at individual levels. The new treatment significantly reduces a heating anomaly near the tropopause that is associated with a large amount of mixing cloud mass flux ascribed to that region in the original Emanuel ...
- Research Article
2
- 10.1175/jamc-d-11-018.1
- Mar 1, 2012
- Journal of Applied Meteorology and Climatology
A high-order accurate radiative transfer (RT) model developed by Fu and Liou has been implemented into the Navy Operational Global Atmospheric Prediction System (NOGAPS) to improve the energy budget and forecast skill. The Fu–Liou RT model is a four-stream algorithm (with a two-stream option) integrating over 6 shortwave bands and 12 longwave bands. The experimental 10-day forecasts and analyses from data assimilation cycles are compared with the operational output, which uses a two-stream RT model of three shortwave and five longwave bands, for both winter and summer periods. The verifications against observations of radiosonde and surface data show that the new RT model increases temperature accuracy in both forecasts and analyses by reducing mean bias and root-mean-square errors globally. In addition, the forecast errors also grow more slowly in time than those of the operational NOGAPS because of accumulated effects of more accurate cloud–radiation interactions. The impact of parameterized cloud effective radius in estimating liquid and ice water optical properties is also investigated through a sensitivity test by comparing with the cases using constant cloud effective radius to examine the temperature changes in response to cloud scattering and absorption. The parameterization approach is demonstrated to outperform that of constant radius by showing smaller errors and better matches to observations. This suggests the superiority of the new RT model relative to its operational counterpart, which does not use cloud effective radius. An effort has also been made to improve the computational efficiency of the new RT model for operational applications.
- Research Article
83
- 10.1175/1520-0434(1992)007<0262:tdatot>2.0.co;2
- Jun 1, 1992
- Weather and Forecasting
The Navy Operational Global Atmospheric Prediction System (NOGAPS) has proven itself to be competitive with any of the large forecast models run by the large operational forecast centers around the world. The navy depends on NOGAPS for an astonishingly wide range of applications, from ballistic winds in the stratosphere to air-sea fluxes to drive ocean general circulation models. Users of these applications will benefit from a better understanding of how a system such as NOGAPS is developed, what physical assumptions and compromises have been made, and what they can reasonably expect in the future as the system continues to evolve. The discussions will be equally relevant for users of products from other large forecast centers, e.g., National Meteorological Center, European Centre for Medium-Range Weather Forecasts. There is little difference in the scientific basis of the models and the development methodologies used for their development. However, the operational priorities of each center and t...
- Research Article
36
- 10.1175/2008mwr2601.1
- Jan 1, 2009
- Monthly Weather Review
The tropical cyclone (TC) track forecasts of the Navy Operational Global Atmospheric Prediction System (NOGAPS) were evaluated for a number of data assimilation experiments conducted using observational data from two periods: 4 July–31 October 2005 and 1 August–30 September 2006. The experiments were designed to illustrate the impact of different types of satellite observations on the NOGAPS TC track forecasts. The satellite observations assimilated in these experiments consisted of feature-track winds from geostationary and polar-orbiting satellites, Special Sensor Microwave Imager (SSM/I) total column precipitable water and wind speeds, Advanced Microwave Sounding Unit-A (AMSU-A) radiances, and Quick Scatterometer (QuikSCAT) and European Remote Sensing Satellite-2 (ERS-2) scatterometer winds. There were some differences between the results from basin to basin and from year to year, but the combined results for the 2005 and 2006 test periods for the North Pacific and Atlantic Ocean basins indicated that the assimilation of the feature-track winds from the geostationary satellites had the most impact, ranging from 7% to 24% improvement in NOGAPS TC track forecasts. This impact was statistically significant at all forecast lengths. The impact of the assimilation of SSM/I precipitable water was consistently positive and statistically significant at all forecast lengths. The improvements resulting from the assimilation of AMSU-A radiances were also consistently positive and significant at most forecast lengths. There were no significant improvements/degradations from the assimilation of the other satellite observation types [e.g., Moderate Resolution Imaging Spectroradiometer (MODIS) winds, SSM/I wind speeds, and scatterometer winds]. The assimilation of all satellite observations resulted in a gain in skill of roughly 12 h for the NOGAPS 48- and 72-h TC track forecasts and a gain in skill of roughly 24 h for the 96- and 120-h forecasts. The percent improvement in these forecasts ranged from almost 20% at 24 h to over 40% at 120 h.
- Conference Article
4
- 10.1109/igarss.2002.1025693
- Nov 7, 2002
The major weather services worldwide have concluded that longer-term tropospheric weather forecasting will require a more realistic treatment of the stratosphere. A major research effort is now underway at the Naval Research Laboratory (NRL) to extend the Navy Operational Global Atmospheric Prediction System (NOGAPS) into the stratosphere. The extended NOGAPS must assimilate and forecast ozone because absorption of UV radiation by ozone provides the primary energy input into the stratosphere. This energy input is a major driver of the stratospheric circulation, which, in turn, significantly affects the large-scale movement of surface weather systems. Operational ozone data for the extended NOGAPS will be obtained from the NPOESS Ozone Mapping and Profiler Suite (OMPS). OMPS consists of a nadir-viewing instrument that measures the ozone total column and profile (similar to TOMS & SBUV/2), and a limb-viewing instrument designed to measure the ozone profile between the tropopause and 60 km. OMPS-like ozone data are needed for developing and testing the extensions to NOGAPS. We have proposed an early flight of OMPS, OMPS-AE (OMPS-Assimilation Experiment), to provide such data. We are also exploring techniques for merging and extending data from existing satellite measurements of ozone profiles to produce 3D global ozone fields. In the future we will conduct experiments in which the global ozone fields from OMPS-AE or the data fusion experiments will be assimilated into the extended NOGAPS, with the aim of evaluating assimilation methodologies and increased forecasting skill.
- Research Article
29
- 10.1175/2010waf2222421.1
- Dec 1, 2010
- Weather and Forecasting
A very strong Arctic major sudden stratospheric warming (SSW) event occurred in late January 2009. The stratospheric temperature climbed abruptly and the zonal winds reversed direction, completely splitting the polar stratospheric vortex. A hindcast of this event is attempted by using the Navy Operational Global Atmospheric Prediction System (NOGAPS), which includes the full stratosphere with its top at around 65 km. As Part I of this study, extended-range (3 week) forecast experiments are performed using NOGAPS without the aid of data assimilation. A unified parameterization of orographic drag is designed by combining two parameterization schemes; one by Webster et al., and the other by Kim and Arakawa and Kim and Doyle. With the new unified orographic drag scheme implemented, NOGAPS is able to reproduce the salient features of this Arctic SSW event owing to enhanced planetary wave activity induced by more comprehensive subgrid-scale orographic drag processes. The impact of the SSW on the tropospheric circulation is also investigated in view of the Arctic Oscillation (AO) index, which calculated using 1000-hPa geopotential height. The NOGAPS with upgraded orographic drag physics better simulates the trend of the AO index as verified by the Met Office analysis, demonstrating its improved stratosphere–troposphere coupling. It is argued that the new model is more suitable for forecasting SSW events in the future and can serve as a tool for studying various stratospheric phenomena.
- Research Article
24
- 10.1016/j.jmarsys.2009.01.020
- Feb 28, 2009
- Journal of Marine Systems
Optimizing surface winds using QuikSCAT measurements in the Mediterranean Sea during 2000–2006
- Research Article
108
- 10.1175/2007waf2006062.1
- Dec 1, 2007
- Weather and Forecasting
Starting from 2003, a new typhoon surveillance program, Dropwindsonde Observations for Typhoon Surveillance near the Taiwan Region (DOTSTAR), was launched. During 2004, 10 missions for eight typhoons were conducted successfully with 155 dropwindsondes deployed. In this study, the impact of these dropwindsonde data on tropical cyclone track forecasts has been evaluated with five models (four operational and one research models). All models, except the Geophysical Fluid Dynamics Laboratory (GFDL) hurricane model, show the positive impact that the dropwindsonde data have on tropical cyclone track forecasts. During the first 72 h, the mean track error reductions in the National Centers for Environmental Prediction’s (NCEP) Global Forecast System (GFS), the Navy Operational Global Atmospheric Prediction System (NOGAPS) of the Fleet Numerical Meteorology and Oceanography Center (FNMOC), and the Japanese Meteorological Agency (JMA) Global Spectral Model (GSM) are 14%, 14%, and 19%, respectively. The track error reduction in the Weather Research and Forecasting (WRF) model, in which the initial conditions are directly interpolated from the operational GFS forecast, is 16%. However, the mean track improvement in the GFDL model is a statistically insignificant 3%. The 72-h-average track error reduction from the ensemble mean of the above three global models is 22%, which is consistent with the track forecast improvement in Atlantic tropical cyclones from surveillance missions. In all, despite the fact that the impact of the dropwindsonde data is not statistically significant due to the limited number of DOTSTAR cases in 2004, the overall added value of the dropwindsonde data in improving typhoon track forecasts over the western North Pacific is encouraging. Further progress in the targeted observations of the dropwindsonde surveillances and satellite data, and in the modeling and data assimilation system, is expected to lead to even greater improvement in tropical cyclone track forecasts.
- Research Article
60
- 10.1175/jpo-2656.1
- Jan 1, 2005
- Journal of Physical Oceanography
This paper examines the sensitivity of sea surface temperature (SST) to water turbidity in the Black Sea using the eddy-resolving (∼3.2-km resolution) Hybrid Coordinate Ocean Model (HYCOM), which includes a nonslab K-profile parameterization (KPP) mixed layer model. The KPP model uses a diffusive attenuation coefficient of photosynthetically active radiation (kPAR) processed from a remotely sensed dataset to take water turbidity into account. Six model experiments (expt) are performed with no assimilation of any ocean data and wind/thermal forcing from two sources: 1) European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis (ERA) and 2) Fleet Numerical Meteorology and Oceanography Center (FNMOC) Navy Operational Global Atmospheric Prediction System (NOGAPS). Forced with ECMWF, experiment 1 uses spatially and monthly varying kPAR values over the Black Sea, experiment 2 assumes all of the solar radiation is absorbed at the sea surface, and experiment 3 uses a constant kPAR value of 0.06 m−1, representing clear-water constant solar attenuation depth of 16.7 m. Experiments 4, 5, and 6 are twins of 1, 2, and 3 but forced with NOGAPS. The monthly averaged model SSTs resulting from all experiments are then compared with a fine-resolution (∼9 km) satellite-based monthly SST climatology (the Pathfinder climatology). Because of the high turbidity in the Black Sea, it is found that a clear-water constant attenuation depth (i.e., expts 3 and 6) results in SST bias as large as 3°C in comparison with standard simulations (expts 1 and 4) over most of the Black Sea in summer. In particular, when using the clear-water constant attenuation depth as opposed to using spatial and temporal kPAR, basin-averaged rms SST difference with respect to the Pathfinder SST climatology increases ∼46% (from 1.41°C in expt 1 to 2.06°C in expt 3) in the ECMWF forcing case. Similarly, basin-averaged rms SST difference increases ∼36% (from 1.39°C in expt 4 to 1.89°C in expt 6) in the NOGAPS forcing case. The standard HYCOM simulations (expts 1 and 4) have a very high basin-averaged skill score of 0.95, showing overall model success in predicting climatological SST, even with no assimilation of any SST data. In general, the use of spatially and temporally varying turbidity fields is necessary for the Black Sea OGCM studies because there is strong seasonal cycle and large spatial variation in the solar attenuation coefficient, and an additional simulation using a constant kPAR value of 0.19 m−1, the Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) space–time mean for the Black Sea, did not yield as accurate SST results as experiments 1 and 4. Model–data comparisons also revealed that relatively large HYCOM SST errors close to the coastal boundaries can be attributed to the misrepresentation of land– sea mask in the ECMWF and NOGAPS products. With the relatively accurate mask used in NOGAPS, HYCOM demonstrated the ability to simulate accurate SSTs in shallow water over the broad northwest shelf in the Black Sea, a region of large errors using the inaccurate mask in ECMWF. A linear relationship is found between changes in SST and changes in heat flux below the mixed layer. Specifically, a change of ∼50 W m−2 in sub-mixed-layer heat flux results in a SST change of ∼3.0°C, a value that occurs when using clear-water constant attenuation depth rather than monthly varying kPAR in the model simulations, clearly demonstrating potential impact of penetrating solar radiation on SST simulations.
- Research Article
82
- 10.1175/1520-0493(1993)121<2373:ssotng>2.0.co;2
- Aug 1, 1993
- Monthly Weather Review
The purpose of this paper is to discuss the major systematic errors of the U.S. Navy Operational Global Atmospheric Prediction System (NOGAPS), version 3.2, and to describe several tuning experiments of NOGAPS parameterizations. It is found that despite its overall good performance, major systematic errors exist in the forecast model. These errors lead to a warmer atmosphere with less precipitation and eddy kinetic energy than is observed. Some of the errors may be attributed to the lack of horizontal and vertical resolution, but most of the errors are due to inadequacies and incorrect assumptions in the physical parameterizations. We present a list of the systematic errors of the operational 5-day forecasts and results of a 1-yr integration with climatological sea surface temperatures. One of the prominent features of NOGAPS integrations is a large diurnal oscillation in the global mean averages. This oscillation is traced to large differences in total albedo over the land and sea areas. We pres...
- Research Article
15
- 10.1175/1520-0493(1985)113<1433:aoeotn>2.0.co;2
- Sep 1, 1985
- Monthly Weather Review
The second in a series of studies designed to identify systematic pressure, displacement, and directional errors in the 48-hour surface pressure forecast of extratropical cyclones by the Navy Operational Global Atmospheric Prediction System (NOGAPS) has been completed for the 1983 Northern Hemisphere winter season (5 January–31 March). All available NOGAPS 0000 and 1200 GMT forecast cycles are verified for the Western Pacific, Eastern Pacific, and Atlantic Oceans north of the equator. NOGAPS generally underforecasts the intensity of cyclones during their early stages, but overforecasts them during their mature and decaying phase. NOGAPS was slow in forward movement but showed improvement over the previous Navy forecast model. Case studies are presented which illustrate typical pressure and speed error patterns and the possible consequences of an inferior analysis on forecast quality. The results of this study correspond closely with the conclusions derived from the preliminary evaluation.
- Research Article
- 10.1029/2025jc022843
- Nov 1, 2025
- Journal of Geophysical Research: Oceans
- Research Article
- 10.1029/2025jc022841
- Nov 1, 2025
- Journal of Geophysical Research: Oceans
- Research Article
- 10.1029/2025jc022521
- Nov 1, 2025
- Journal of Geophysical Research: Oceans
- Research Article
- 10.1029/2024jc022203
- Nov 1, 2025
- Journal of Geophysical Research: Oceans
- Research Article
- 10.1029/2025jc022344
- Nov 1, 2025
- Journal of Geophysical Research: Oceans
- Research Article
- 10.1029/2025jc022570
- Nov 1, 2025
- Journal of Geophysical Research: Oceans
- Journal Issue
- 10.1002/jgrc.v130.11
- Nov 1, 2025
- Journal of Geophysical Research: Oceans
- Research Article
- 10.1029/2025jc022981
- Nov 1, 2025
- Journal of Geophysical Research: Oceans
- Research Article
- 10.1029/2025jc023011
- Nov 1, 2025
- Journal of Geophysical Research: Oceans
- Research Article
- 10.1029/2025jc023093
- Nov 1, 2025
- Journal of Geophysical Research: Oceans
- Ask R Discovery
- Chat PDF
AI summaries and top papers from 250M+ research sources.