Abstract

Traditional settlements have received increasing attention because of China’s rural revitalization. Traditional settlements with excellent thermal comfort in rural areas can attract urban residents, so it is vital to explore the thermal comfort of traditional settlements. For this paper, we studied Linpan settlements, which are scattered traditional settlements that are mainly composed of buildings and trees. Firstly, we visually interpreted Linpan settlements by ArcGIS. A total of 1194 Linpan settlements were classified to obtain the spatial components. The statistical results of Linpan were used in the subsequent experimental design. Then ENVI-met was used to simulate 25 different spatial forms of Linpan obtained by statistical results and orthogonal experiment to explore the most comfortable Linpan layout. The results showed the following: (1) Linpan could improve thermal comfort in both winter and summer. Adjusting the spatial arrangement could maximally increase the mean physiological equivalent temperature (PET) of the whole Linpan area by 1.03 °C in winter and reduce it by 3.02 °C in the summer. (2) At different time points, the influence of different space factors on thermal comfort was also different. The overall significance of each factor on thermal comfort was addressed as follows: vegetation coverage (highly significant) > building number (highly significant) > building form (highly significant) > vegetation distribution (significant), but the building distribution was not significant. (3) The best spatial arrangement scheme was high vegetation coverage, a large number of buildings, tri-courtyard buildings, surrounding vegetation distribution, and surrounding building distribution. The innovation of this paper lies in introduced thermal comfort into the traditional Linpan settlement, extracted spatial features of buildings and vegetation by visual interpretation combined with GIS software, and the fact that we conducted the experimental design of microclimate and thermal comfort based on spatial features. The research results can guide the outdoor thermal environment renewal design of Linpan and other traditional settlements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.