Abstract

This study was aimed to determine the extent of association between network-level pavement condition and seasonal and annual weather variations. Pavement condition data recorded in the Texas Department of Transportation’s Pavement Management Information System (PMIS) database between 2000 and 2008 was highlighted. Meteorological data collected at different districts across the whole state were used in the explanatory variables. Dynamic panel data analysis was used in the deterioration models to quantify the effects of temperature and precipitation variations on pavement conditions. Based on the statistical implication from the model estimation results, significant correlations were identified between pavement conditions, the average monthly rainfall, and the average monthly temperature recorded 1 to 23 months prior to pavement condition inspection.

Highlights

  • The climatic factors affecting pavements are mainly temperature and precipitation

  • The results of this study indicate that at air temperatures higher than 30 ◦C, the high pavement design temperature was underestimated by the Superpave and Long-Term Pavement Performance (LTPP) models

  • The results show that longitudinal cracking of flexible pavement was significantly affected by both temperature and precipitation, whereas alligator cracking and transverse cracking on permanent deformation were only affected significantly by mean annual temperature

Read more

Summary

Introduction

The climatic factors affecting pavements are mainly temperature and precipitation. While temperature affects the resilient modulus of asphalt material and causes curling of concrete slab, moisture entering the pavement structure through cracks may reduce the strength of pavement and subgrade [1]. Studies have been conducted to quantify the effects of climatic variations on pavement performance at the project level and from a pavement design viewpoint, which usually has adopted an empirical–mechanistic approach. Tighe et al [3] and Mills et al [4] use Canadian data from the Long-Term Pavement Performance (LTPP) database and the Mechanistic Empirical Pavement Design Guide (MEPDG) to quantify the impact of projected climate factors on pavement performance of low-level volume roads. Meagher et al [5] use climate model data sets at four different sites across New England as inputs into the MEPDG model, in order to simulate flexible pavement performance and deterioration over time. The authors found that while the simulated impact of climate changes is negligible for alligator cracking, the asphalt pavement rutting differences were significant

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.