Abstract

Abstract Motivated by the field observations of fall velocity and axis ratio deviations from predicted terminal velocity and equilibrium axis ratio values, the combined effects of raindrop fall velocity and axis ratio deviations on dual-polarization radar rainfall estimations were investigated. A radar rainfall retrieval algorithm [Colorado State University–Hydrometeor Identification Rainfall Optimization (CSU-HIDRO)] served as the test bed. Subsequent investigations determined that the available field measurements, which were very limited in scope, of the fall velocity and axis ratio deviations indicated rain-rate estimation errors of approximately 20%. Based on these findings, a sensitivity study was then performed using uncorrelated fall velocity and axis ratio deviations around the predicted values. Significant rain-rate estimation errors were observed for the realistic combinations of fall velocity and axis ratio deviations. It was shown that the maximum rain-rate estimation error can reach up to approximately 200% for combinations of fall velocity and axis ratio deviations (5000 drop size distribution samples were simulated for each combination) between −10% and +10% of the predicted values for each. The maximum standard deviation of errors was as great as 75% for the same combinations of fall velocity and axis ratio deviations. The authors found that use of dual-polarization radars to accurately estimate rainfall, during natural rain events, also requires a reanalysis of the parameterizations for raindrop fall velocity and axis ratio. These parameterizations should consider both the coupling between these two parameters and factors that may introduce any possible deviations of the predicted values of these parameters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.