Abstract

To clarify the Ni species of NiO/SiO2-Al2O3 catalysts that are active for ethylene oligomerization, 18 types of NiO/SiO2-Al2O3 were prepared using three Ni-loading methods (i.e., ion-exchange, impregnation, and homogeneous precipitation), with different Ni-loadings (1–20 wt%), and examined with respect to their structure and catalytic activity for ethylene oligomerization. Characterized by N2 adsorption, powder XRD, FE-SEM, H2-TPR, NH3-TPD, and C2H4-TPD showed that Ni species in the catalysts prepared by ion-exchange were mainly ion-exchanged Ni cations. In contrast, Ni species in the catalysts prepared by impregnation were a mixture of ion-exchanged Ni cations and NiO particles, and those in the catalysts prepared by homogeneous precipitation were all NiSiO3 particles. Catalytic-reaction tests at 300 °C and 0.1 MPa revealed the following: the ion-exchanged Ni cations showed the highest C2H4 conversion rate; the NiSiO3 particles showed a moderate reaction rate; and the NiO particles were not active for ethylene oligomerization. We concluded that the high catalytic activity of the ion-exchanged Ni cations was a result of their high dispersion and medium-strength acidity, which together promoted the adsorption and activation of ethylene on, and the desorption of oligomerization products from, the catalyst.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.