Abstract

The Xi'an City and the surrounding area (the Guan-Zhong—GZ region) in western China have been suffering severe air pollutions during wintertime in recent years. In-situ black carbon (BC) measurement combined with a regional dynamical and chemical model (WRF-Chem model) is used to investigate the formation of a haze episode occurred from Jan. 3rd to Jan. 13th 2013. The results show that the measured BC concentrations exhibit a large day-to-day variability. The impacts of synoptic weather systems, local meteorological parameters and mountain effect on the BC variability are studied. Because the GZ region is surrounded by two major mountains, the Loess Plateau in the north and the Qinling Mountains in the south, especially the peak of the Qinling Mountains higher than 3000m, we particularly analyze the effects of the Qinling Mountains on the BC pollution. The analysis shows that the BC pollution in Xi'an City and the GZ region is strongly affected by the synoptic weather systems, local meteorological winds and the Qinling Mountains. Under a typical northeast wind condition, winds are blocked by the Qinling Mountains, and BC particles are trapped at the foothill of the mountains, resulting in high BC concentrations in the city of Xi'an. Under a typical east wind condition, BC particles are transported along a river valley and the foothill of the Qinling Mountains. In this case, the mountain-river valley plays a role to accelerate the east wind, resulting in a reduction of the BC pollution. Under a typical calm wind condition, the BC particles are less diffused from their source region, and there is a mountain breeze from the Qinling Mountains to the city of Xi'an, and BC particles accumulate in the city, especially in the north side of the city. This study illustrates that while locating between complicated terrain conditions, such as the GZ region, the mountains play very important roles for the formation of hazes in the region.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.