Abstract

AbstractThe formation of a monolithic part during diffusion bonding is accompanied by the diffusion of atoms across the bonding planes. At sufficient low roughness, it mainly depends on the temperature and dwell time. At the same time, the diffusion process competes against grain growth. By adjusting an appropriate level of bearing pressure, it is possible to control deformation taking into account additional parameters resulting from mechanical microstructures and the design and aspect ratio of the part. Furthermore, material properties, such as the content of alloying elements, the degree of cold work hardening and the grain size, have an impact on diffusion and deformation behavior. Also the surface condition of mating surfaces is important to diffusion kinetics and the quality of the joint. Especially passivation layers of corrosion‐resistant alloys, such as stainless steels and nickel‐based alloys, impair diffusion. In contrast to this, cold work hardening at low depth below the surface, e. g. by means of a blasting processes, may facilitate formation of a good bond and help to limit grain size. For oxide dispersion‐strengthened materials, additional impacts on diffusion bonding behavior applies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.