Abstract

AbstractThis study examines the impacts of humidity adjustment in a cloud analysis system on the analysis and forecast of a squall line that occurred in southeast China on 23–24 April 2007. Radial velocity data are assimilated using the ARPS three‐dimensional variational system while reflectivity data are assimilated by a cloud analysis system. Experiments with two different humidity adjustment schemes are performed, with the original and enhanced versions. Another experiment does not adjust moisture. Both schemes generally decrease the humidity in front of the convective line and increase the humidity within the convective and stratiform regions of squall line compared to no humidity adjustment, and the original scheme produces the higher humidity within precipitation regions, especially the stratiform region. Both schemes improve the forecast of squall line structure, including the leading convective line, a transition zone, and a trailing stratiform region. Among the three experiments, the enhanced scheme produces the highest precipitation forecast skill. The latent heating rates are also diagnosed to investigate the microphysical responses to the humidity adjustment. The cooling outside of the observed precipitation regions corresponding to the humidity reduction also acts to suppress spurious precipitation. Water vapor condensation into cloud water and cloud water evaporation generally dominate the latent heating/cooling below the freezing level. Compared to the enhanced scheme, the original scheme releases much more latent heat in the middle troposphere, causing more warming. This is linked to the higher cloud water condensation rate, due to the higher amount of moisture addition/adjustment by the original scheme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.