Abstract

Harmful algal blooms of the freshwater cyanobacteria genus Microcystis are a global problem and are expected to intensify with climate change. In studies of climate change impacts on Microcystis blooms, atmospheric stilling has not been considered. Stilling is expected to occur in some regions of the world with climate warming, and it will affect lake stratification regimes. We tested if stilling could affect water column Microcystis distributions using a novel individual-based model (IBM). Using the IBM coupled to a three-dimensional hydrodynamic model, we assessed responses of colonial Microcystis biomass to wind speed decrease and air temperature increase projected under a future climate. The IBM altered Microcystis colony size using relationships with turbulence from the literature, and included light, temperature, and nutrient effects on Microcystis growth using input data from a shallow urban lake. The model results show that dynamic variations in colony size are critical for accurate prediction of cyanobacterial bloom development and decay. Colony size (mean and variability) increased more than six-fold for a 20% decrease in wind speed compared with a 2 °C increase in air temperature. Our results suggest that atmospheric stilling needs to be included in projections of changes in the frequency, distribution and magnitude of blooms of buoyant, colony-forming cyanobacteria under climate change.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.