Abstract

Infrared thermography is a predictive maintenance tool used in substations to identify a disturbance in electrical equipment that could lead to poor operation and potential failure in the future. According to Joule’s law, the temperature of electrical equipment is proportional to the current flowing through it. Other external factors, such as solar incidence, air humidity, wind speed, and air temperature, can interfere with its operating temperatures. Based on this premise, this article aims to analyze the influence of atmospheric and load conditions on the operational cycle of thermography-monitored equipment in order to describe the operating temperature of the object using only external data and to show the impacts of external influences on the final temperature reached by the object. Five multivariate time series regression models were developed to describe the maximum equipment temperature. The final model achieved the best fit between the measured and model temperature based on the Akaike information criterion (AIC) metric, where all external variables were used to compose the model. The proposed model shows the impacts of each external factor on equipment temperature and could be used to create a predictive maintenance strategy for power substations to avoid failure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.