Abstract
Hole mobility changes under uniaxial and combinational stress in different directions are characterized and analyzed by applying additive mechanical uniaxial stress to bulk Si and SiGe-virtual-substrate-induced strained-Si (s-Si) p-MOSFETs (metal-oxide-semiconductor field-effect transistors) along (110) and (100) channel directions. In bulk Si, a mobility enhancement peak is found under uniaxial compressive strain in the low vertical field. The combination of (100) direction uniaxial tensile strain and substrate-induced biaxial tensile strain provides a higher mobility relative to the (110) direction, opposite to the situation in bulk Si. But the combinational strain experiences a gain loss at high field, which means that uniaxial compressive strain may still be a better choice. The mobility enhancement of SiGe-induced strained p-MOSFETs along the (110) direction under additive uniaxial tension is explained by the competition between biaxial and shear stress.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.