Abstract

Additive manufacturing is a new and quite promising trend in the low-cost building of Ti–6Al–4V parts which are widely used in aircraft, chemical, medical, and other industries. It is well-documented that 3D-printed Ti–6Al–4V parts have higher yield strength, ultimate tensile strength and hardness but lower ductility and toughness as compared with wrought alloy. In this study, comparison on the microstructure and impact toughness of wrought Ti–6Al–4V and ones fabricated by additive manufacturing such as i) laser and electron-beam powder bed deposition as well as ii) direct energy wire deposition was performed. The 2.7 times enhancement of fracture toughness of Ti–6Al–4V parts fabricated by electron beam free-form fabrication as compared with cast Ti–6Al–4V alloy was demonstrated. The 5.6 times increase in the impact toughness as in contrast with selective laser and electron-beam melted ones was revealed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.