Abstract

Eight chromium-tungsten steels ranging from 2.25 to 12 wt% Cr were irradiated at 365°C to 13–14 dpa in the Fast Flux Test Facility. Post irradiation Charpy impact tests showed a loss of toughness for all steels, as measured by an increase in the ductile-brittle transition temperature (DBTT) and a decrease in the upper-shelf energy. The most irradiation-resistant steels were two 9% Cr steels: the DBTT of a 9Cr-2W-0.25V-0.1C steel increased 29°C, and for the same composition with an addition of 0.07% Ta the DBTT increased only 15°C. This is the smallest shift ever observed for such a steel irradiated to these levels. The other steels developed shifts in DBTT of 100 to 300°C. A 2.25% Cr steel with 2% W, 0.25% V, and 0.1% C was less severely affected by irradiation than 2.25% Cr steels with 0.25% V and no tungsten, 2% W and no vanadium, and with 1% W and 0.25% V. Irradiation resistance appears to be associated with microstructure, and microstructural manipulation may lead to improved properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.