Abstract

In this paper, ZnO nanobelts have been partially high-quality synthesized employing diverse reactant mass ratios between zinc acetate [Zn(AC)2] and polyvinyl alcohol (PVA) without any catalyst. The maximum temperature required for the whole reaction process is no more than 650[Formula: see text]C. The morphologies of ZnO nanomaterials fabricated from distinct reactant concentrations have been systematically investigated by means of field-emission scanning electron microscopy (FESEM). X-ray diffraction (XRD) analysis identifies that ZnO nanobelts exhibit a typical wurtzite structure. Through fluorescence spectrometer, the photoluminescence (PL) spectra generated by ZnO nanomaterials corresponding to different reactant concentrations have disparate peak intensities and luminescence wavelengths. This phenomenon indicates that novel-synthesized ZnO nanomaterial shows great potential in changing the optical properties of light-emitting devices. In addition, synthetic ZnO nanobelts exhibit excellent UV emission capability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.