Abstract

Impact of V/III ratio on electrical properties of GaN thick films are investigated, which are grown by hydride vapor-phase epitaxy. The authors note that the electron concentration of GaN films decreases with the increase of V/III ratio, while their electrical resistivity and electron mobility increase simultaneously. These indicate that enhancing V/III ratio suppresses electron-feeding sources in GaN films, which is not by generating electron-trapping centers but by reducing donor-type defects. On the other hand, it is shown that the linewidth of x-ray rocking curves in GaN films decreases and the near-band edge emission intensity of 10K photoluminescence spectra increases as V/III ratio increases. These mean that higher V/III ratio condition helps for reducing crystalline point defects in GaN films. In terms of theoretical fitting into the temperature-dependence curves of electron mobilities, it is found that the electron transport of GaN films grown in lower V/III ratio condition is more hampered by defect scatterings. Consequently, it is suggested that the generation of donor-type defects in the GaN thick films is more suppressed by higher V/III ratios, which induces lower background electron concentration and higher electron mobility.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.