Abstract
Background and objectiveTotal Variation (TV) minimization algorithms have achieved great attention due to the virtue of decreasing noise while preserving edges. The purpose of this work is to implement and evaluate two TV minimization methods in 3D. Their performance is analyzed through 3D visualization of digital breast tomosynthesis (DBT) data with volume rendering. MethodsBoth filters were studied with real phantom and one clinical DBT data. One algorithm was applied sequentially to all slices and the other was applied to the entire volume at once. The suitable Lagrange multiplier used in each filter equation was studied to reach the minimum 3D TV and the maximum contrast-to-noise ratio (CNR). Imaging blur was measured at 0° and 90° using two disks with different diameters (0.5 mm and 5.0 mm) and equal thickness. The quality of unfiltered and filtered data was analyzed with volume rendering at 0° and 90°. ResultsFor phantom data, with the sequential filter, a decrease of 25% in 3D TV value and an increase of 19% and 30% in CNR at 0° and 90°, respectively, were observed. When the filter is applied directly in 3D, TV value was reduced by 35% and an increase of 36% was achieved both for CNR at 0° and 90°. For the smaller disk, variations of 0% in width at half maximum (FWHM) at 0° and a decrease of about 2.5% for FWHM at 90° were observed for both filters. For the larger disk, there was a 2.5% increase in FWHM at 0° for both filters and a decrease of 6.28% and 1.69% in FWHM at 90° with the sequential filter and the 3D filter, respectively. When applied to clinical data, the performance of each filter was consistent with that obtained with the phantom. ConclusionsData analysis confirmed the relevance of these methods in improving quality of DBT images. Additionally, this type of 3D visualization showed that it may play an important complementary role in DBT imaging. It allows to visualize all DBT data at once and to analyze properly filters applied to all the three dimensions.Concise AbstractTotal Variation (TV) minimization algorithms are one compressed sensing technique that has achieved great attention due to the virtue of decrease noise while preserve edges transitions. The purpose of this work is to solve the same TV minimization problem in DBT data, by studying two 3D filters. The obtained results were analyzed at 0° and 90° with a 3D visualization through volume rendering. The filters differ in their application. One considers a slice-by-slice optimization, sequentially traversing all slices of the data. The other considers the intensity values of adjacent slices to make this optimization on each voxel. The performance of each filter was also tested with a clinical case. The results obtained were very encouraging with a significantly increased contrast to noise ratio at 0° and 90° and a small reduction in blur at 90° (slight reduction of the out-of-plane artifact).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.