Abstract

An accurate assessment of unsteady interactions in turbines is required, so that this may be taken into account in the design of the turbine. This assessment is required since the efficiency of the turbine is directly related to the contribution of unsteady loss mechanisms. This paper presents unsteady entropy measurements in an axial turbine. The measurements are conducted at the rotor exit of a one–and-one-half-stage unshrouded turbine that is representative of a highly loaded, high-pressure stage of an aero-engine. The unsteady entropy measurements are obtained using a novel miniature fast-response probe, which has been developed at ETH Zurich. The entropy probe has two components: a one-sensor fast-response aerodynamic probe and a pair of thin-film gauges. The probe allows the simultaneous measurement of the total temperature and the total pressure from which the time-resolved entropy field can be derived. The measurements of the time-resolved entropy provide a new insight into the unsteady loss mechanisms that are associated with the unsteady interaction between rotor and stator blade rows. A particular attention is paid to the interaction effects of the stator wake interaction, the secondary flow interaction, and the potential field interaction on the unsteady loss generation at the rotor exit. Furthermore, the impact on the turbine design of quantifying the loss in terms of the entropy loss coefficient, rather than the more familiar pressure loss coefficient, is discussed in detail.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.