Abstract
The TTN gene encodes a large muscle protein called titin, which provides structure, stability, and flexibility to skeletal and cardiac sarcomeres. The aim of this study was to determine whether the TTN C > T polymorphism (rs10497520) influenced training-induced changes in selected variables of aerobic and anaerobic capacity. We studied genotypes distribution in a group of 156 Caucasian females examined for aerobic capacity evaluated by maximal oxygen uptake (VO2max), and anaerobic capacity measured with the Wingate anaerobic test, before and after a 12-week training program. The most important finding was a genotype by training interaction for anaerobic capacity (AnC) during the Wingate test (p = 0.003). In response to training, carriers of the CT and TT genotypes demonstrated a significant increase in the total amount of work accomplished. We also showed that the applied training program improved all the Wingate test variables in the CT + TT genotype group by 10%. The obtained results suggest that the CT and TT genotypes may enhance anaerobic power and anaerobic capacity changes induced by regular training. We also suggest that T allele carriers may possess a metabolic adaptive advantage towards the anaerobic metabolism. Thus, the TTN gene may be considered a promising marker used in sports science, underlying variability in achieving sporting goals in events where the anaerobic energy system predominates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.