Abstract

Using dual-frequency data from 36 GPS stations from the EUREF Permanent Network (EPN), the influence of the October 30, 2003 Halloween geomagnetic storm on kinematic GPS positioning is investigated. The Halloween storm induced ionospheric disturbances above the northern part of Europe and Scandinavia. It is shown that kinematic position repeatabilities for this period are mainly affected for stations in northern Europe with outliers reaching 12 cm in the horizontal, and 26 cm in the vertical. These magnitudes are shown to be possibly due to the second-order ionospheric delays on GPS signals, not accounted for in the kinematic GPS positioning analysis performed. In parallel, we generate hourly TEC (Total Electron Content) maps on a 1° × 1° grid using the dense EPN network. These TEC maps do not use any interpolation but provide a high resolution in the time and space and therefore allow to better evidence small structures in the ionosphere than the classical 2-hourly 2.5° × 5° grid Global Ionospheric TEC Maps (GIM). Using the hourly 1° × 1° TEC maps, we reconstruct and refine exactly the zones of intense ionosphere activity during the storm, and we show the correlation between the ionospheric activity and assess the quality of GPS-based kinematic positioning performed in the European region.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.