Abstract

Enfuvirtide (ENF), the first human immunodeficiency virus type 1 (HIV-1) fusion inhibitor approved for clinical use, acts by binding to gp41 heptad repeat 1 (HR1) and preventing its interaction with the viral HR2 region. Treatment-emergent resistance to ENF has been mapped to residues within HR1, and these mutations decrease its susceptibility to ENF and may reduce viral fitness and pathogenesis, although the mechanism for these effects is not clear. N43D, a common ENF resistance mutation, was found in in vitro assays to cause a 5-50-fold in antiviral activity. We introduced this mutation into peptide models and determined the impact of this mutation by circular dichroism and X-ray crystallography. We find that the mutation results in a decrease in the thermal stability of the six-helix bundle and causes a significant change in the HR1-HR2 interface, including a loss of HR2 helicity. These data form a mechanistic basis for the decrease in ENF sensitivity and six-helix bundle stability. The E137K polymorphism, generally present at baseline in patients who develop N43D, partially compensates for the loss of stability, and we show that these residues likely form an ion pair. These data form a framework for understanding the impact of resistance mutations on viral fitness and pathogenesis and provide a pathway for the development of novel fusion inhibitor peptides.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.