Abstract

In early 2020, the COVID-19 epidemic spread globally. This study investigated the air quality of three cities in Hubei Province, Wuhan, Jingmen, and Enshi, central China, from January to March 2017–2020 to analyze the impact of the epidemic prevention and control actions on air quality. The results indicated that in the three cities, during February 2020, when the epidemic prevention and control actions were taken, the average concentrations of atmospheric PM2.5, PM10, SO2, CO, and NO2 in the three cities were 46.1 µg m–3, 50.8 µg m–3, 2.56 ppb, 0.60 ppm, and 6.70 ppb, and were 30.1%, 40.5%, 33.4%, 27.9%, and 61.4% lower than the levels in February 2017–2019, respectively. However, the average O3 concentration (23.1, 32.4, and 40.2 ppb) in 2020 did not show a significant decrease, and even increased by 12.7%, 14.3%, and 11.6% in January, February, and March, respectively. This is because a lower concentration of NO2 resulted in constraints on the NO + O3 reaction, and the O3 could not be effectively further depleted. In addition, the average air quality index (AQI) for the three cities in January, February, and March 2020 were 32.2%, 27.7%, and 14.9% lower than the levels in 2017–2019, respectively. Based on the AQIs for the three cities, the combined proportions of Class I and Class Ⅱ in January, February, and March 2020 increased by 27.9%, 24.8%, and 4.3%, respectively, while the combined proportion of AQI Classes III, IV, V, and VI was reduced from 34.8% to 15.8%. In addition, in the first three months of 2020, the indicatory air pollutants in the three cities for the AQIs were predominant in the following order: PM2.5 (72.0%), O3 (16.4%), PM10 (8.3%), NO2 (2.9%), and CO (0.4%). This study provides useful information for establishing a scientific air pollution control strategy and is a valuable reference for future research on improving urban air quality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.