Abstract

Eutectic high-entropy alloys (EHEAs) can achieve a balance of high strength and ductility. It has been found that the mechanical properties of hypoeutectic high-entropy alloys are superior to those of EHEAs. In this work, hypereutectic Al1.1CoCrFeNi2.1 alloy was prepared, and the mechanical properties in a wide temperature range were studied. The presence of both soft ordered L12 and hard BCC (B2) phases results in a combination of ductile and brittle fracture modes. The Al1.1CoCrFeNi2.1 hypereutectic high-entropy alloy contains more primary soft L12 phases, which ensure excellent ductility. Moreover, the Orowan by-passing mechanism caused by the B2 precipitates increases in the strength of the alloy for low-temperature tensile tests (−100 °C and 23 ± 2 °C). The −100 °C test exhibits a dimple morphology and demonstrates the highest ultimate tensile strength of 1231 MPa, along with an excellent elongation of 44%. At high tensile temperatures (650 °C, 750 °C, and 850 °C), the dislocation cutting mechanism and dynamic recrystallization increase the plasticity. However, the presence of a large number of cracks near the spherical primary L12 phase significantly reduces the ductility and strength. The results show that the hypereutectic Al1.1CoCrFeNi2.1 exhibits superior plasticity and strength properties at low temperatures. The findings of the article provide a new approach to enhancing the comprehensive mechanical properties of hypereutectic alloys.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.