Abstract
For direct integration into device architectures, surface-anchored metal-organic framework (surMOF) thin films are attractive systems for a wide variety of electronic, photonic, sensing, and gas storage applications. This research systematically investigates the effect of deposition method and surface functionalization on the film formation of a copper paddle-wheel-based surMOF. Solution-phase layer-by-layer (LBL) immersion and LBL spray deposition methods are employed to deposit copper benzene-1,4-dicarboxylate (Cu-BDC) on gold substrates functionalized with carboxyl- and hydroxyl-terminated alkanethiol self-assembled monolayers (SAMs). A difference in crystal orientation is observed by atomic force microscopy and X-ray diffractometry based on surface functionalization for films deposited by the LBL immersion method but not for spray-deposited films. Cu-BDC crystallites with a strong preferred orientation perpendicular to the substrate were observed for the films deposited by the LBL immersion method on carboxyl-terminated SAMs. These crystals could be removed upon testing adhesive properties, whereas all other Cu-BDC surMOF film structures demonstrated excellent adhesive properties. Additionally, film stability upon exposure to water or heat was investigated. Ellipsometric data provide insight into film formation elucidating 7 and 14 Å average thicknesses per deposition cycle for films deposited by the immersion method on 11-mercapto-1-undecanol (MUD) and 16-mercaptohexadecanoic acid (MHDA), respectively. In contrast, the films deposited by the spray method are thicker with the same average thickness per deposition cycle (21 Å) for both SAMs. While the spray method takes less time to grow thicker films, it produces similar crystallite structures, regardless of the surface functionalization. This research is fundamental to understanding the impact of deposition method and surface functionalization on surMOF film growth and to provide strategies for the preparation of high-quality surMOFs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.