Abstract

Abstract In most ocean general circulation models the simulated global-scale deep-ocean thermohaline properties appear to be chronically colder and fresher than observed. To some extent, this discrepancy has been known to be due to excessive open-ocean deep convection in the Southern Ocean (SO) caused by crude “convective adjustment” parameterizations on scales typically two orders of magnitude larger than the actual convection scale. To suppress the strength of open-ocean convection and to thereby eventually improve the global deep-ocean water properties, the authors first reduced convection in the SO in an ad hoc manner by activating it every 10 days rather than every model time step (20 hours). Second, a more physically based subgrid-scale convection in the SO was introduced by applying the penetrative plume convection scheme of Paluszkiewicz and Romea. With both treatments, SO convection decreased by about 30%, and the globally averaged deep-ocean potential temperature and salinity increased substanti...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.