Abstract

Suitable solvent additives provide an effective means to control the morphology of polymer blend films. In this work, we systematically investigate the impact of the solvent additive chloronaphthalene (CN) on the morphology of P3HT : EP-PDI blends. The optimum volume fraction of solvent additive CN was found to be 0.5 vol% by atom force microscopy and transmission electron microscopy. UV–visible absorption spectroscopy and grazing incidence x-ray diffraction indicate that the crystallinity of both the P3HT and EP-PDI domains significantly decreased in the blends with 0.5 vol% CN. Grazing incidence small-angle x-ray scattering results show that the size of the small EP-PDI aggregation decreases from 44–22 nm with the addition of CN. Time-resolved photoluminescence measurement reveals that the decreased EP-PDI domains give rise to increased donor–acceptor interfacial areas, which not only facilitate the exciton dissociation, but suppresses the formation of the EP-PDI intermolecular state.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.