Abstract
AbstractThis research study investigates the influence of various nanoparticles on the dielectric breakdown voltage, oil dissipation factor, viscosity, and thermal conductivity of nanofluids. Nanofluids were prepared using synthetic ester oil as the base fluid, and three nanoparticles, silicon carbide (SiC), boron nitride (BN), and zirconium dioxide (ZrO2), were added at different concentrations (0.125 wt%, 0.250 wt%, and 0.375 wt%), which are basically the nano‐sized powder that can be blended in the oil. The dielectric breakdown voltage testing was conducted to evaluate the electrical performance of the nanofluids. Additionally, rheological measurements were performed to study the kinematic viscosity, while thermal conductivity was determined using appropriate techniques. The enhancements in each property were evaluated and compared for the different nanoparticle concentrations and types. Previous studies focused only on the investigation of the electrical properties of nanofluids. However, in the present study, the electrical as well as thermo‐physical characterisation of nanofluids is performed and analysed as they directly affect the cooling performance of transformers. The results provide dielectric and thermo‐physical characterisation that exhibit excellent insulation and cooling functionalities and valuable insights into the potential applications of nanofluids as dielectrics in various high‐voltage electrical equipment. ZrO2 and SiC nanoparticles exhibited a reduction in the oil dissipation factor. SiC consistently improved breakdown voltage (Bdv), while ZrO2 nanoparticles showed concentration‐dependent effects, enhancing Bdv at low concentrations but degrading it at higher ones. Unexpectedly, nanoparticle dispersion and lubrication effects can lead to viscosity reductions, countering conventional expectations. Surprisingly, at the highest concentration, the thermal conductivity decreases compared to the lower nano‐concentrations in synthetic ester oil.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.