Abstract
This study investigates the impact of beach sediment supply on dune volume evolution through data analysis and model simulations of the Kennemer dunes in the Netherlands. A cross-shore sediment transport model (the CS-model) is applied with local time-averaged longshore sediment transport gradients derived from bathymetric and topographic observations. The model is used to study the relative importance of different transport processes on dune volume evolution, assuming that aeolian transport from the beach to the dune is supply-limited. The wave-driven longshore transport gradients are found to explain a large part of the observed variation in the dune evolution within the study area. In accreting parts of the coast, dunes are growing due to sediment supply from longshore transport, whereas in eroding parts, dune growth depends on supply from artificial nourishments. Seasonal constructions on the beach and vegetation removal from the dunes partly impede dune growth along the considered stretch of coast. The model performance is satisfactory, being able to reproduce a considerable part of the large variation in the alongshore dune response observed in the study area. Overall, the results are a promising contribution to the capability of simulating decadal-scale dune evolution, which is important for long-term flood risk assessments and safe designs of nature-based solutions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.