Abstract

Gradual screw loosening is a well-known failure mechanism in internal fixation. Loosening is primarily due to progressive bone loss caused by stress shielding, a phenomenon in which a medical device absorbs a disproportionate amount of load within the screw-bone construct. The proximity of elastic moduli of magnesium and bone presents the potential for alleviating screw loosening by allowing optimum stress to be transferred between screw and bone, and in turn, supporting bone remodeling around the screw. In this study, the effect of thread profile on stress transfer in a magnesium fixation was simulated using a 2-D finite element model. Modified stress parameters from a previous study were used to estimate stress transfer across three thread profiles. Results showed highest stress transfer in trapezoidal-shaped magnesium screw thread. In accordance, this study corroborates the potential for magnesium as an ultimate screw material to eliminate progressive screw loosening.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.