Abstract

We have investigated the impacts of Sb incorporation on the microstructural, optical, electrical, and carrier dynamics properties of bulk InGaAsSbN films in a comparative study of InGaAsN and InGaAsSbN materials grown by metal–organic vapor phase epitaxy (MOVPE). These films were grown at the relatively high temperature of 600 °C and annealed at 800 °C for 30 min. Transmission electron microscopy studies indicate compositional and structural homogeneity of the InGaAsN and InGaAsSbN films. Low-temperature time-resolved photoluminescence measurements of the MOVPE-grown InGaAsN film show a longer minority carrier lifetime (∼40 ns) than observed for the InGaAsSbN film (∼26 – 27 ns). In addition, single-junction solar cells with an InGaAsN (InGaAsSbN) base layer exhibit an open-circuit voltage of 0.64 (0.58) V, a short-circuit current of 17.13 (16.89) mA/cm2, a fill factor (FF) of 77.55 (74.29)%, and an efficiency of 8.57 (7.31)%. Sb incorporation in InGaAsN adversely affects solar cell performance due to a reduced minority carrier lifetime correlated with the formation of defects and narrow depletion region width resulting from a higher background carbon impurity level.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.