Abstract

Roux-en-Y gastric bypass (RYGB) has become the gold-standard bariatric procedure, partly because of the rapid resolution of accompanying diabetes. There is increasing evidence this is mediated by duodenal exclusion. We hypothesize that duodenal exclusion suppresses intestinal Na(+)/glucose cotransporter SGLT1-mediated glucose transport, improving glucose handling, and aimed to test this in a rodent RYGB model. Sprague-Dawley rats underwent sham procedure or duodenal exclusion by RYGB (10 cm Roux, 16 cm biliopancreatic limbs). Animals were maintained for 3 wk on a Western diet, before harvest at 10 AM, 4 PM, and 10 PM. Sections were taken from each limb for hematoxylin and eosin staining, and morphological assessment was performed. Functional glucose uptake studies, along with Western blotting and quantitative PCR, were performed on Roux limb. Histology showed morphometric changes in Roux and common limbs, with increase in villus height and crypt depth compared with BP and sham jejunum. Despite this, glucose transport was reduced by up to 68% (P < 0.001) in the Roux limb compared with sham jejunum. Normal diurnal rhythms in glucose uptake were ablated. This occurred at a posttranscriptional level, with little change in message but appearance of different weight species of Sglt1 on Western blotting. We have shown duodenal exclusion significantly influences both intestinal structure and glucose transport function, with glucose absorptive capacity reduced after RYGB. This provides a novel mechanistic explanation for some of the antidiabetic effects of RYGB.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.