Abstract

We conduct a comparative study of conductivity and diffusion coefficient of two dicationic ionic liquids (3,3'-(octane-1,8-diyl)bis(1-ethyl-3-imidazolium) bis(trifluoromethylsulfonyl)amide ([IMCI][TFSI], S1) and 3,3'-(2,2'-(ethane-1,2-diylbis(oxy))bis(ethane-2,1-diyl))bis(1-ethyl-3-imidazolium) bis(trifluoromethylsulfonyl)amide ([IMOI][TFSI], S2)) at various temperatures. The diffusion coefficients of cation and anion in ionic liquids are determined by using pulse gradient spin-echo nuclear magnetic resonance method. S2 shows lower viscosity, higher conductivity, and higher diffusion coefficient than those of S1. Moreover, the influence of polyethyleneglycol (PEG200, Mw =200) addition in PEG200/IL binary solutions is investigated. PEG200/S1 binary solutions show lower viscosity, higher conductivity, and higher diffusion coefficient than those of neat S1. The experimental molar conductivity (Λ) of neat IL and PEG200/IL binary solutions is lower than that of the calculated molar conductivity (ΛNMR ) from pulse gradient spin-echo nuclear magnetic resonance method at various temperatures, indicating that not all the diffusion species belong to the ionic conduction. In other words, NMR diffusion measurements comprise charged and paired (without charge) ions. Copyright © 2017 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.