Abstract

We explore the impact of three water-soluble polyelectrolytes (PEs) on the flow of concentrated suspensions of poly(N-isopropylacrylamide) (PNIPAm) microgels with thermoresponsive anionic charge density. By progressively adding the PEs to a jammed suspension of swollen microgels, we show that the rheology of the mixtures is remarkably influenced by the sign of the PE charge, PE concentration and hydrophobicity only when the temperature is increased above the microgel volume phase transition temperature Tc, namely when microgels collapse, they are partially hydrophobic and form a volume-spanning colloidal gel. We find that the original gel is strengthened close to the isoelectric point, attained when microgels are mixed with cationic PEs, while PE hydrophobicity rules the gel strengthening at very high PE concentrations. Surprisingly, we find that polyelectrolyte adsorption or partial embedding of PE chains inside the microgel periphery occurs also when anionic polymers of polystyrene sulfonate with a high degree of sulfonation are added. This gives rise to colloidal stabilization and to the melting of the original gel network above Tc. Contrastingly, the presence of polyelectrolytes in suspensions of swollen, jammed microgels results in a weak softening of the original repulsive glass, even when an apparent isoelectric condition is met. Our study puts forward the crucial role of electrostatics in thermosensitive microgels, unveiling an exciting new way to tailor the flow of these soft colloids and highlighting a largely unexplored path to engineer soft colloidal mixtures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.