Abstract

Fouling behaviour and its impact on the rejection of trace organic contaminants (TrOCs) by forward osmosis (FO) were investigated. Membrane fouling was simulated using humic acid and colloidal particles as model foulants at different initial permeate water fluxes. Water flux decline was insignificant at an initial permeate flux of 9L/m2h and the fouling layer was loose and fluid-like. By contrast, the water flux decline was substantial at an initial permeate flux of 20L/m2h, resulting in the formation of a compact fouling layer. Water flux recovery after physical cleaning for both humic acid and colloidal particle fouled membranes was consistently higher at an initial permeate flux of 9L/m2h compared to 20L/m2h. The results suggest that the fouling layer structure varied from a fluid-like loose layer at low initial permeate flux to a more cohesive and compact layer at high initial permeate flux. We surmise that the fluid-like loose layer formed at low initial permeate flux contributed to pore blockage and thus enhanced steric hindrance, thereby leading to an increase in TrOC rejection. By contrast, the cohesive and compact fouling layer formed at high initial permeate flux exacerbated cake-enhanced concentration polarisation, resulting in a decrease in TrOC rejection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.