Abstract
ABSTRACTWe investigate the impact of the number of human–computer interactions, different interaction patterns, and human inconsistencies in decision maker responses on the convergence of an interactive, evolutionary multiobjective algorithm recently developed by the authors. In our context “an interaction” means choosing the best and worst solutions among a sample of six solutions. By interaction patterns we refer to whether preference questioning is more front‐, center‐, rear‐, or edge‐loaded. As test problems we use two‐ to four‐objective knapsack problems, multicriteria scheduling problems, and multiobjective facility location problems. In the tests, two different preference functions are used to represent actual decision maker preferences, linear and Chebyshev. The results indicate that it is possible to obtain solutions that are very good or even nearly optimal with a reasonable number of interactions. The results also indicate that the algorithm is robust to minor inconsistencies in decision maker responses. There is also surprising robustness toward different patterns of interaction with the decision maker. The results are of interest to the evolutionary multiobjective (EMO) community actively developing hybrid interactive EMO approaches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.