Abstract

Here, we study the impact of non-Markovian evolution on prominent characteristics of quantum thermodynamics such as ergotropy and power. These are benchmarked by the behavior of the quantum speed limit time. We make use of both geometric-based, particularly the quantum Fisher and Wigner–Yanase information metric, and physical properties-based measures, particularly the relative purity measure and relative entropy of coherence measure, to compute the quantum speed limit time. A simple non-Markovian model of a qubit in a bosonic bath exhibiting non-Markovian amplitude damping evolution is considered, which, from the quantum thermodynamic perspective with finite initial ergotropy, can be envisaged as a quantum battery. To this end, we explore the connections between the physical properties-based measures of the quantum speed limit time and the coherent component of ergotropy. The non-Markovian evolution is shown to impact the recharging process of the quantum battery. Furthermore, a connection between the discharging–charging cycle of the quantum battery and the geometric measures of the quantum speed limit time is observed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.