Abstract
Human 5-lipoxygenase (5-LOX) oxidizes arachidonic acid to 5S-hydroperoxy-6E,8Z,11Z,14Z-eicosatetraenoic acid (5-HpETE) and leukotriene (LT) A4. In neutrophils, LTA4 is further converted to the potent chemoattractant LTB4. These cells also contain the heme enzyme myeloperoxidase (MPO), which produces several potent oxidants such as hypochlorous acid (HOCl), which are involved in pathogen defense and immune regulation. Here, we addressed the question whether MPO-derived oxidants are able to affect the activity of 5-LOX and the product profile of this enzyme. Human 5-LOX was incubated with increasing amounts of HOCl or HOBr. Afterward, arachidonic acid metabolites of 5-LOX were analyzed by reverse-phase high-performance liquid chromatography as well as by liquid chromatography–electrospray ionization–tandem mass spectrometry. The incubation of 5-LOX with the MPO-derived oxidants significantly changed the product profile of 5-LOX. Thereby, HOCl and HOBr increased the ratio of 5-H(p)ETE to 6-trans-LTB4 in a concentration-dependent manner. At low oxidant concentrations, there was a strong decrease in the yield of 6-trans-LTB4, whereas 5-HpETE did not change or increased. Additionally, the formation of 8-HpETE and 12-HpETE by 5-LOX rose slightly with increasing HOCl and HOBr. Comparable results were obtained with the MPO–H2O2–Cl− system when glucose oxidase and glucose were applied as a source of H2O2. This was necessary because of a strong impairment of 5-LOX activity by H2O2. In summary, MPO-derived oxidants showed a considerable impact on 5-LOX, impairing the epoxidation of 5-HpETE, whereas the hydroperoxidation of arachidonic acid was unaffected. Apparently, this was caused by an oxidative modification of critical amino acid residues of 5-LOX. Further work is necessary to assess the specific type and position of oxidation in the substrate-binding cavity of 5-LOX and to specify whether this interaction between 5-LOX and MPO-derived oxidants also takes place in stimulated neutrophils.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.