Abstract

The α7 nicotinic acetylcholine receptor (nAChR) has been implicated as a target in modulating nicotine reward. However, the effect of pharmacological agents that have been shown to alter the channel properties of the α7 nAChR is not well understood in nicotine reward. This study aimed to investigate the impact of α7 nAChR pharmacological modulation on nicotine conditioned place preference (CPP) in mice by using positive allosteric modulators (PAMs) and a silent agonist. The effect of the orthosteric α7 nAChR full agonist PNU282987 (1.3 and 9mg/kg, s.c.), Type I α7 PAM NS1738 (1 and 10mg/kg; i.p.), the Type II α7 PAM PNU120596 (0.3, 1, and 3mg/kg, i.p.), and the α7 silent agonist NS6740 (1 and 3mg/kg, i.p) on nicotine CPP was measured in mice. Mice were conditioned with either saline or nicotine (0.5mg/kg) for 3days in the CPP paradigm. The α7 full orthosteric agonist PNU282987 and the Type II α7 nAChR PAM PNU120596 reduced nicotine CPP, while the silent agonist NS6740 and Type I PAM NS1738 had no effect. The effects of PNU282987 and PNU120596 did not have an effect on morphine CPP. Taken together, our results suggest that modulation of the α7 nAChR can play important roles in nicotine CPP in mice. In addition, the Type II α7 nAChR PAM PNU120596 attenuated nicotine reward suggesting that endogenous acetylcholine/choline tone is sufficient to reduce nicotine CPP. These findings highlight a beneficial effect of using α7 nAChR PAMs in nicotine reward.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.