Abstract

Abstract Simulations of moist convection at cloud-permitting grid spacings are sensitive to the parameterization of microphysical processes, posing a challenge for operational weather prediction. Here, the Weather Research and Forecasting (WRF) Model is used to examine the sensitivity of simulations of the Great Salt Lake–effect snowstorm of 27 October 2010 to the choice of microphysics parameterization (MP). It is found that the simulated precipitation from four MP schemes varies in areal coverage, amount, and position. The Thompson scheme (THOM) verifies best against radar-derived precipitation estimates and gauge observations. The Goddard, Morrison, and WRF double-moment 6-class microphysics schemes (WDM6) produce more precipitation than THOM, with WDM6 producing the largest overprediction relative to radar-derived precipitation estimates and gauge observations. Analyses of hydrometeor mass tendencies show that WDM6 creates more graupel, less snow, and more total precipitation than the other schemes. These results indicate that the rate of graupel and snow production can strongly influence the precipitation efficiency in simulations of lake-effect storms, but further work is needed to evaluate MP-scheme accuracy across a wider range of events, including the use of aircraft- and ground-based hydrometeor sampling to validate MP hydrometeor categorization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.