Abstract

The assessment of VOC emission rates and sorption coefficients was performed for ten surfaces present within a classroom, using field and laboratory emission cells (FLEC) coupled to online and off-line VOC quantification techniques. A total of 21 identified VOCs were emitted by the different surfaces. VOC emission rates measured using PTR-ToF-MS were compared to gas chromatographic measurements. The results showed that the two methods are complementary to one another. Sorption parameters were also successfully measured for a mixture of 14 VOCs within a few hours (<17hours per surface). A study of the spatial and temporal variability of the measured parameters was also carried out on the two surfaces that presented the most potential for interaction with VOCs, accounting for the largest surface areas within the room. The dataset of emission rates and sorption parameters was used in the INCA-Indoor model to predict indoor air concentrations of VOCs that are compared to experimental values measured in the room. Modeling results showed that sorption processes had a limited effect on indoor concentrations of VOCs for these field campaigns. Modeled daily profiles show good agreement with the experimental observations for VOCs such as toluene (indoor source) and xylenes (outdoor source) but underestimate concentrations of methanol (both indoor and outdoor sources).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.