Abstract
The chemical composition of atmospheric aerosols was characterized using an on-board single particle aerosol mass spectrometer (SPAMS) over the Southeast China Sea. High-time-resolution observation of marine aerosols was carried out to clarify the source of aerosols and the interaction of marine and continental aerosols. Atmospheric aerosols were determined by the interaction of continental and marine sources over coastal area. Aerosols from continental sources flux into sea surfaces through deposition or diffusion, which results in the rapid decrease of continental aerosols. Five main subtypes of carbonaceous particles are identified as C_Al-Si, C_V-Ni, C_S, C_K, and C_secondary to clarify the impact of marine and continental sources on atmospheric aerosols. High fraction of C_Al-Si and C_secondary is present over XA (Xiamen anchorage), accounting for 23.8% and 18.6% of total carbonaceous particles. Contrarily, the relative percentage of C_S increases as the distance from land to sea increases. The influence of continental aerosols declines, while the contribution of marine aerosols increases as the distance from land to sea increases. Air masses in XA, LSA (land to sea area), SLA (sea to land area), and SA (sea area) were all from ocean during the observation period, resulting in low relative fraction of continental aerosols in SLA, SA, and LSA. High-time-resolution measurement is useful to understand aerosol source types and the impact of marine and continental sources on marine atmosphere aerosols.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.